A quantitative version of the commutator theorem for zero trace matrices

نویسندگان

  • William B. Johnson
  • Narutaka Ozawa
  • Gideon Schechtman
چکیده

Let A be a m ×m complex matrix with zero trace and let ε > 0. Then there are m ×m matrices B and C such that A = [B, C] and ‖B‖‖C‖ ≤ Kεm‖A‖ where Kε depends only on ε. Moreover, the matrix B can be taken to be normal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hilbert Schmidt version of the commutator theorem for zero trace matrices

Let A be a m × m complex matrix with zero trace. Then there are m ×m matrices B and C such that A = [B,C] and ‖B‖‖C‖2 ≤ (logm + O(1))‖A‖2 where ‖D‖ is the norm of D as an operator on `2 and ‖D‖2 is the Hilbert–Schmidt norm of D. Moreover, the matrix B can be taken to be normal. Conversely there is a zero trace m × m matrix A such that whenever A = [B,C], ‖B‖‖C‖2 ≥ | logm−O(1)|‖A‖2 for some abso...

متن کامل

On a functional equation for symmetric linear operators on $C^{*}$ algebras

‎Let $A$ be a $C^{*}$ algebra‎, ‎$T‎: ‎Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $‎. ‎We prove that under each of the following conditions‎, ‎$T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: ‎‎ ‎i) $A$ is a simple $C^{*}$-algebra‎. ‎ii) $A$ is unital with trivial center and has a faithful trace such ...

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

Power Indices of Trace Zero Symmetric Boolean Matrices

The power index of a square Boolean matrix A is the least integer d such that A is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n × n primitive symmetric Boolean matrices of trace zero, the class of n × n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zer...

متن کامل

Triangularization over finite-dimensional division rings using the reduced trace

In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012